Revision
Supervised Learning
Linear Regression
Logistic Regression
Decision Tree
Random Forest
Boosting
SVM
Gaussian Discriminant Analysis
Naive Bayes
Unsupervised Learning
K-means
Mean shift
Hierarchical clustering
DBSCAN
OPTICS
Spectral clustering
PCA
Other Resources
Loss functions
Estimators
Metrics
Sigmoid and Softmax
Grid and Random Search
Cross validation
EM Algorithm
Vapnik-Chervonenkis dimension
Bias variance tradeoff
Unbalanced Dataset
Interpretability