Revision
1. ML system in production
2. ML System Fundamentals
3. Data System Fundamentals
4. Training Data
5. Class Unbalanced
6. Data Augmentation
7. Feature Engineering
8. Feature Evaluation
9. Data Leakage
10. ML Selection
11. Distributed Training
12. Offline Evaluation
13. Deployment
14. ML system failures
15. Continual Learning
16. ML System Design Steps